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Abstract
We exclude the center of mass of the N-particle rational Calogero model and
consider the angular part of the resulting Hamiltonian. We show that it describes
the motion of the particle on an (N − 2)-dimensional sphere interacting with
N(N − 1)/2 force centers with Higgs oscillator potential. In the case of a
four-particle system, these force centers define the vertexes of an Archimedean
solid called a cuboctahedron.

PACS numbers: 02.30.Ik, 02.40.Yy

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Calogero model [1–3] and its various extensions and generalizations play a distinguished
role among other multi-particle integrable systems. They have attracted much attention due
to their rich internal structure and numerous applications in many areas of physics (see, e.g.,
the recent review [4] and references therein).

In the continuum or thermodynamic limit, i.e. for large particle numbers, the Calogero
model gives rise to a Yang–Mills theory [5] on a cylinder, while its superconformal extension
describes a black hole in the near-horizon limit [6]. In this limit, the system has soliton
solutions corresponding to the fundamental excitations [7].

The quantum Calogero model describes free particles with fractional statistics whose
type is determined by the interaction strength [8]. Moreover, the variational ground state of
the fractional quantum Hall effect (known as the Laughlin state [9]) can be considered as some
deformation of the ground state of the Calogero model [10]. The trigonometric analog of the
model [11] is related to integrable spin-1/2 chains with long-range interactions, which possess
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a resonating-valence-bond ground state [12]. Recently, the relation with the Benjamin–Ono
equation arising in the hydrodynamics of stratified fluids has been established [13].

The Calogero model and its modifications appear also in matrix models [14], W∞-algebras
[15], Yangian quantum groups [16], random matrices [17] and many other areas of physics
and mathematics.

In this paper, we will study the classical rational Calogero system without confining
potential. It describes one-dimensional particles with inverse-square interaction [1–3]:

H = 1

2

N∑
i=1

p2
i +

∑
i<j

g

(xi − xj )2
, {pi, xj } = δij . (1)

One of the important features of the system is its manifest conformal invariance, which was
essential for the invention of the model, as well as for its further studies.

In the pioneering paper [1], the three-particle model was considered first. After excluding
the center of mass (with a priori conserving momentum) and taking into account the conformal
invariance, the model was reduced to a one-dimensional exactly solvable system on a circle
considered by Jacobi in the middle of the 19th century [18]:

I = p2
ϕ

2
+

9g

2 cos2 3ϕ
. (2)

For more particles, the analysis of the Calogero model becomes more complicated. In
particular, the construction of the complete set of the constants of motion assumes the use of
the powerful method of the Lax pair [3]. This approach allowed us to relate the Calogero
system to AN−1 Lie algebras, as well as to construct its integrable modifications related to
other Lie algebras [19]. The Calogero systems can be obtained from the free-particle system
by an appropriate reduction procedure known as the projection method [20]. Recently, it has
been generalized to the Calogero model extensions corresponding to the root systems [21].

However, the analog of the system (2) has not been properly studied for the case of more
than three particles. Such a study would be an interesting problem from a few viewpoints.

Already in the pioneering papers [1, 2], it was observed that the spectrum of the Calogero
model with additional oscillator potential is similar to the spectrum of a free N-dimensional
oscillator. It was claimed there that a similarity transformation to the free-oscillator system
may exist, at least, in the part of the Hilbert space. However, this transformation was written
explicitly only three decades later [22]. In [23], it was related to the conformal group
SU(1, 1). This similarity transformation has a very transparent geometric explanation for the
two-particle Calogero model (the ‘conformal mechanics’): it corresponds to the inversion in
the Klein model of the Lobachevsky space, which describes the phase space of the system.
A natural way to extend this picture to the multi-particle Calogero system is to identify the
coordinates of its ‘radial’ part with the coordinates of the Klein model. In other words, one
must extract and investigate the angular part of the system.

Another motivation is connected with the superconformal extensions of the Calogero
model. In [23], the authors suggested to use the aforementioned similarity transformation
for the construction of the N = 4 superconformal Calogero system [25]. However, the
suggested algebraic scheme is quite nontrivial, and for the cases of four and more particles
it assumes the solving of WDVV and other partial differential equations. On the other hand,
in [27] the superconformal extension of the three-particle Calogero model was constructed in
a transparent way within the superfield approach by extracting the model (2) from the initial
system. This approach seems to be applicable to the any-particle Calogero system, under the
assumption that its angular part admits N = 4 supersymmetric extension.
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The other stimulus for the study of the angular part of the Calogero model is the
translation of the discrete symmetries of the one-dimensional multi-particle system to the
higher-dimensional one-particle one. This would provide us with a priori integrable higher-
dimensional one-particle system with some discrete symmetry.

The purpose of the current paper is the investigation of the angular part of the N-particle
Calogero model with the excluded center of mass. Like in the three-particle case, it is a
constant of motion. Hence, its Poisson brackets with the Liouville constants of motions
can generate the additional constants of motions. This can give a simple explanation of the
superintegrability of the Calogero model observed many years ago by Wojciechowski [28]. We
show that the angular part itself describes a particle on the (N −2)-dimensional sphere, which
interacts with the N(N − 1)/2 force centers by the Higgs oscillator low. Briefly speaking,
we have a N(N − 1)/2-center (N − 2)-dimensional Higgs oscillator. For the N = 4 case
corresponding to particle motion on a two-dimensional sphere, the force centers are located at
the vertexes of the Archimedean solid cuboctahedron. This observation opens a few horizons
for further study of the Calogero model. In particular, the investigation of the angular part of
the spin-Calogero model and/or its supersymetric extensions becomes especially important
due to the possibility of applications in solid state physics.

The paper is organized as follows.
In section 2, we exclude the center of mass from the N-particle Calogero model and obtain

an (N − 1)-dimensional system characterized by N(N − 1)/2 unit vectors. These vectors
correspond to the positive roots of the Lie algebra AN−1. Then we show that the angular part
of the reduced system describes a particle on the (N − 2)-dimensional sphere interacting with
the vertexes of the aforementioned vectors by the Higgs oscillator low.

In section 3, we illustrate the general analysis of section 2 for the simplest nontrivial case
of the three-particle Calogero model. The corresponding angular part is given by (2). We
show that its Poisson bracket with the third-order Liouville constant of motion coincides with
the additional constant of motion. Then we derive an explicit functional dependence between
four constants of motion (including the Hamiltonian).

In section 4, we consider the four-particle system. We show that its angular part describes
a multicenter Higgs oscillator on a two-dimensional sphere with force centers located at the
vertexes of the cuboctahedron.

In the last section, we summarize the results and discuss the possible extension to the
supersymmetric Calogero systems.

2. The center-of-mass system

In order to decouple the center of mass, we introduce a new coordinate system for the N-particle
Calogero model:

y0 = 1√
N

N∑
i=1

xi, yk = 1√
N − k + 1

(√
N − kxk − 1√

N − k

N∑
i=k+1

xi

)
,

1 � k � N − 1. (3)

Here y0 describes the center-of-mass movement, while the remaining yk describe the motion
in the center-of-mass system. The transformation (3) is chosen to be orthogonal:

N∑
k=1

(dxk)
2 = (dy0)

2 +
N−1∑
k=1

(dyk)
2.
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Hence, the inverse transformation xk = ∑N
n=1 Aknyn coincides with its transpose:

Akm =

⎧⎪⎪⎨
⎪⎪⎩

1/
√

N for m = 0
−1/

√
(N − m + 1)(N − m) for k > m � 1√

N − k/
√

N − k + 1 for m = k

0 for other m.

Using these formulae, we rewrite the Hamiltonian of the Calogero model in terms of the
center-of-mass variables:

H = 1

2

N∑
i=1

p2
i +

∑
i<j

g

(xi − xj )2
= p2

0

2
+ H̃.

Here p0 = ∑N
i=1 pi is the conserved total momentum of the N-particle Calogero system. The

last term is given by the expression

H̃ = 1

2

N−1∑
i=1

p2
i +

N(N−1)/2∑
a=1

g

2
(∑N−1

k=1 ba
kyk

)2 , {pi, yj } = δij , (4)

where a ≡ (i, j) enumerates the pairs of interacting particles, pi (we keep the old notation for
them) are the new momenta conjugated to yi , and

ba
k = b

ij

k = Aik − Ajk√
2

. (5)

It is clear that the Hamiltonian with the excluded center of mass H̃ is a constant of motion of
the original system (1). From the orthogonality of the matrix Aik we have∑

k

(
b

ij

k

)2 = 1,

cos αij,i ′j ′ =
∑

k

b
ij

k b
i ′j ′
k = 1

2

∑
k

(Aik − Ajk)(Ai ′k − Aj ′k)

= 1

2
(δii ′ + δjj ′ − δij ′ − δi ′j ).

(6)

So, the coordinates ba = (
ba

1 , . . . , b
a
N−1

)
define unit vectors in (N − 1)-dimensional space,

while αij,i ′j ′ are the angles between them. In fact, ba correspond to the positive roots of the
Lie algebra AN−1 (rescaled by the factor 1/

√
2). Indeed, the potential of the original model

(1) can be presented as the inverse-square sum over all positive roots �+ of AN−1 multiplied
by the particle coordinates:

∑
α∈�+

g/(α · x)2 [20]. The orthogonal transformation (3) acts on
those roots by mapping them onto ba . Therefore, the last vectors define the same root system.

The reduced system (4), (5) can be interpreted as a one-particle system in (N − 1)-
dimensional space. Let us extract the radius r of the obtained system. This can be done, for
instance, in hyperspherical coordinates, where the Hamiltonian (4) takes the following form:

H̃ = p2
r

2
+
I
(
pϕα

, ϕα

)
r2

, I
(
pϕα

, ϕα

) = Ksph
(
pϕα

, ϕα

)
2

+
∑

a

g

2 cos2 θa

,

{pϕα
, ϕα} = δαβ,

(7)

where α, β = 2, . . . , N − 1. Here Ksph is the standard kinetic term of the particle on the
hypersphere SN−2 with unit radius, θa is the angle between ba and the unit vector n = r/r

directed from the hypersphere center to the particle.
Since I is independent from the radial coordinates pr and r, it commutes with the

Hamiltonian H̃. So, it is a constant of motion of the Calogero model. Note that this integral
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is quadratic on the momenta (while in the standard Lax pair approach, the only constant of
motion which is quadratic on momenta is the Hamiltonian). It is easy to verify that any
other integral being in involution with I must depend on the radial coordinates through the
Hamiltonian H̃. Therefore, it is not in involution, at least, with the integrals having an odd
order on pr and is functionally independent from the N commuting integrals constructed using
the Lax pair. The matter is that the Calogero model is not only an integrable in the Liouville
sense (which means the existence of N integrals being in involution) but also is maximally
superintegrable with 2N − 1 functionally independent integrals [28] (see also [29]). Clearly,
I is a function of this complete set of the constants of motion. Moreover, its Poisson bracket
action on the Liouville constants of motions generates the additional constants of motion,
which are responsible for the superintegrability.

It can be considered as the Hamiltonian of a particle moving on the (N − 2)-dimensional
sphere with N(N −1)/2 force centers defined by the vectors ba . Since this system is invariant
under reflections ba → −ba for any a, sometimes it is reasonable to consider the N(N − 1)

properly located force centers. In order to clarify the physical meaning of the obtained system,
let us rewrite its potential as follows:

Vsph =
∑

a

g

2 cos2 θa

= N(N − 1)g

4
+

g

2

∑
a

tan2 θa.

Recall now that

VHiggs = ω2r2
0 tan2 θ

2
is the well-known potential of the Higgs oscillator. It generalizes the ordinary oscillator
potential for the sphere with the radius r0 and inherits all its hidden symmetries [32].

Hence, we obtained the integrable N(N − 1)/2-center N-dimensional Higgs oscillator of
the frequency ω = √

g.
The location of the force centers is quite rigid and deserves to be considered in more

detail. Note that the Higgs oscillator was invented about 30 years ago and has been studied in
hundreds of papers so far (see, e.g., [33] and references therein). Nevertheless, its anisotropic
version was found quite recently [34], whereas the two-center version is not known yet, up to
our knowledge.

3. The three-particle case: circle

The simplest system is the angular part of the three-particle model considered in the pioneering
paper by Calogero [1]. Actually, this system was considered in the middle of the 19th century
by Jacobi [18] (see also [35]). For N = 3, we get a particle on the circle S1 with three force
centers defined by the unit vectors b12, b23 and b13. The angles between them are equal to
π/3 and 2π/3 (figure 1):

cos α12,13 = cos α13,23 = 1/2, cos α12,23 = −1/2.

The above vectors make up the set of positive roots of A2 ≡ su(3) Lie algebra. Completing
them by the oppositely directed vectors corresponding to the negative roots, we obtain a system
with six force centers. The angular part of the Hamiltonian,

I = p2
ϕ

2
+

g

2 cos2 ϕ
+

g

2 cos2(ϕ + π/3)
+

g

2 cos2(ϕ − π/3)
= p2

ϕ

2
+

9g

1 + cos 6ϕ
, (8)

coincides with (2). It is invariant under the rotation on π/3 and the reflection ϕ → −ϕ,
which generate the symmetry group D6 ≡ S3 ⊗ Z2 of the hexagon (figure 1). Here S3 is the

5
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π
3

ϕ

b23

b13

b12

y2

y1

Figure 1. The force centers (b12, b23, b13 and their opposites), which form the root system of
su(3) and constitute an hexagon. The angle ϕ describes the position of a particle on the cycle.

symmetric group of three-particle permutations, which I inherits from the original Calogero
Hamiltonian (1). The Z2-symmetry corresponds to the reflection invariance xi → −xi of
(1). The integrability of this system is obvious. Note that the splitting of the three-particle
Calogero Hamiltonian on the angular and radial parts has been used in [31] for the detailed
study of the quantization.

Let us briefly discuss the relation of the system on a circle with the superintegrability of
the three-particle Calogero model. Note that its superintegrability was studied in detail (see
[30] and references therein). In the center-of-mass system, three from the five functionally
independent constants of motion of the original Calogero system survive. Namely, the
Hamiltonian of the two-particle system, H̃ = p2

r

/
2 + I/r2, and its constant of motion,

F =
(

p2
r − 6I

r2

)
pr sin 3ϕ +

(
3p2

r − 2I
r2

)
pϕ cos 3ϕ

r
, (9)

are reduced from the second- and third-order (on momentum) Liouville constants of motion.
Similarly, the third conserved quantity,

K =
(

p2
r − 6I

r2

)
prpϕ cos 3ϕ −

(
3p2

r − 2I
r2

)
2I sin 3ϕ

r
, (10)

is inherited from the additional third-order constant of motion of the three-particle Calogero
system. The integrals H̃,F and K are functionally independent. We have expressed them in
terms of the angular part of the Hamiltonian (8), which also conserves. Its Poisson bracket
action maps the Liouville integral to the additional one:

{I,F} = 3K, {I,K} = −6IF . (11)

The four quantities H̃, I,F and K form an overcompleted set of constants of motion. They
are subjected to the algebraic relation

K2 + 2IF2 = 8H̃3(2I − 9g) or I = K2 + 72gH̃3

16H̃3 − 2F2
. (12)
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Figure 2. The vectors (13) together with their opposites form a cuboctahedron and are equivalent
to the root system of su(4). The bold points on the large cycle correspond to b23, b34 and b24

while the small cycle contains the vertexes of the remaining three vectors. The bold lines are the
axes of the coordinate system (15).

Hence, one can choose H̃, I and F as a complete set of functionally independent conserved
quantities. The first two of them are quadratic on momenta, which ensures the separation of
variables in the system.

It is easy to verify that the Poisson brackets (11) are in consistency with relation (12).
Finally, using (12) and the first equation in (11), we obtain the Poisson bracket between two
third-order integrals:

{K,F} = 3(8H̃3 − F2) = 3
K2 + 9gF2

2I − 9g
.

4. The four-particle system: sphere

In the four-particle case, everything becomes much more complicated. In the same way, we
obtain a system on the sphere with six force centers defined by the unit vectors ba with the
following Cartesian coordinates of the ambient R

3 space:

b12 =
(√

2

3
,− 1√

3
, 0

)
, b13 =

(√
2

3
,

1

2
√

3
,−1

2

)
, b14 =

(√
2

3
,

1

2
√

3
,

1

2

)
,

b23 =
(

0,

√
3

2
,−1

2

)
, b24 =

(
0,

√
3

2
,

1

2

)
, b34 = (0, 0, 1).

(13)

The vertexes of bij and their opposite vectors form an Archimedean solid called a
cuboctahedron (figure 2). This polyhedron, like a cube, has the octahedral symmetry
Oh ≡ S4 ⊗ Z2 of order 48. Here S4 is the symmetric group of four-particle permutations,
which preserve the original Calogero Hamiltonian (1). Note that S4 is isomorphic to the
Weyl group of A3 Lie algebra and preserves the orientation of the cuboctahedron. The Z2
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symmetry corresponds to the reflection xi → −xi of all four coordinates. In the Lie algebraic
description, it corresponds to the reflection symmetry of the A3 Dynkin diagram.

Note that the vectors b23, b34 and b24 belong to the ‘equatorial’ plane; the angles between
them are equal to π/3 and 2π/3. Their vertexes and the vertexes of the opposite vectors form
a hexagon (figure 2). This is precisely the same picture as in the three-particle Calogero model
(see figure 1). The endpoints of the vectors b12, b13, b14 are located on a plane parallel to
the equatorial one (figure 2). The distance between the two planes is

√
2/3. They form the

(regular) triangular face of the cuboctahedron, which is shifted by the angle π/6 with respect
to the triangle (b23, b34,−b24).

Let us choose Cartesian coordinates with the first axis directed along b13 while the second
one belongs to the plane formed by b12 and b13. The frame directions then are orthogonal
to the triangles of the cuboctahedron (figure 2). In the respective spherical coordinates, the
angular part of the Hamiltonian reads

I = p2
θ

2
+

p2
ϕ

2 sin2 θ
+

9g(8 − tan2 θ)2

2(3 tan2 θ − 8 + tan3 θ cos 3ϕ)2

+
12g

3 tan2 θ − 8 + tan3 θ cos 3ϕ
+

9g

4 sin2 θ(1 + cos 6ϕ)
. (14)

The invariance under the Z3 group of the rotation on 2π/3 along the third axis is apparent.
The potential (14) is really horrible. It is difficult to believe that the system with such

a potential could be integrable, or could admit a separation of variables. However, the
Hamiltonian can be represented in a much simpler form. Indeed, there are three pairs of the
orthogonal vectors b12 · b34 = b13 · b24 = b14 · b23 = 0. Taking the vector products of these
pairs, one can find out that they form an orthogonal frame:

a1 ≡ b12 × b34, a2 ≡ b13 × b24, a3 ≡ b14 × b23 : ai · aj = δij . (15)

The vectors ai are normal to the squares of the cuboctahedron (figure 2). In this coordinate
system, the Hamiltonian (4) looks like

H̃ =
3∑

i=1

p2
i

2
+

∑
1�i<j�3

(
g

(ui − uj )2
+

g

(ui + uj )2

)
, {pi, uj } = δij , (16)

where, again, we keep the old notations for the new momenta. This is the three-particle D3

Calogero model [20]. However, this is an expected result, since the diagrams D3 and A3

coincide and define the same algebra (in the Dynkin classification, Dn is defined for n � 4).
The angular part of this Hamiltonian has the following form:

I = p2
θ

2
+

p2
ϕ

sin2 θ
+

4g

sin2 θ

[
1

1 + cos 4ϕ
+

k − 6

k − 8 + 8/k − k cos 4ϕ

+
4(k − 16 + 16/k)

(k − 8 + 8/k − k cos 4ϕ)2

]
, (17)

where

k = tan2 θ = 1 − cos 2θ

1 + cos 2θ
.

In these new spherical coordinates, the invariance under Z4 rotations ϕ → ϕ + π/4 and spatial
reflections θ → π − θ , which are a subgroup in Oh, is transparent.

As was explained above and showed explicitly for the three-particle system, I can be
expressed in terms of the five integrals of the maximally superintegrable Hamiltonian (16). It
seems that the two additional integrals of H̃ can be obtained from the Liouville integrals by
Poisson bracket action with I like in (11) for the three-particle case.

8
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Since the spherical system (17) was obtained from the Calogero model, it is also integrable.
Its constants of motion can be obtained from those of the original model.

5. Summary and discussion

In conclusion, let us emphasize the main results of the current paper.
We have found that the angular part of the N-particle rational Calogero model (in the

center-of-mass system) gives rise to the N(N − 1)/2-center hyperspherical (Higgs) oscillator.
Its relations with the superintegrability of the Calogero system have been discussed briefly.

For the three-particle system, we have related the angular part of the Calogero Hamiltonian
(which is quadratic in momentum) to the higher-order constants of motion.

For the four-particle Calogero model, the force centers are located at the vertexes of the
Archimedean solid cuboctahedron.

We are planning in future studies to investigate the reflection of the superintegrability
of the rational four-particle Calogero model on the properties of the corresponding spherical
system and, presumably, to extend this investigation to the case of N > 4 particles. In
particular, this would help us to answer whether the Hamiltonian (17) admits a separation of
variables. We expect that the Poisson bracket of the angular part with the Liouville constants
of motion will generate the additional series of conserved quantities, which are responsible
for the superintegrability.

Another task is to extract and study the angular parts of Calogero models associated with
other Lie algebras. It is obvious that they are also connected with a multi-center spherical
integrable system related to (high-dimensional) polyhedra.

It is clear that the proposed construction is applicable for the quantum spin-Calogero
model too. In that case, the force centers of the angular part will be equipped by the spin-1/2
exchange interactions [36]. In this context, the relation of the four-particle system with the
cuboctahedron becomes important. We expect that using the freezing trick [37], one can obtain
an integrable spin lattice system on the cuboctahedron. Note that recently the Heisenberg spin
systems on large magnetic molecules have been investigated intensively [38]. In particular,
cuboctahedric molecular magnets with nearest-neighbor Heisenberg interaction have been
obtained experimentally and studied theoretically [39]. It will be interesting to consider from
this viewpoint the N = 2 supersymmetric Calogero system [40]. The construction of the
N = 4 supersymmetric counterpart of the suggested system and the study of its integrability
is also important. For the cuboctahedric system, the solution of this task is more or less
obvious: we just need to check whether it is possible to represent the Hamiltonian (14) or (17)
in the form [41]

I = 1

g(z, z̄)

(
ππ̄ +

F(z)F (z̄)

(1 + λ(z)λ(z̄))2

)
, {π, z} = 1, where λ

′
F = −λF .

In this respect, the recent paper [42], where the supersymmetric Calogero model was related
to the nontrivial deformation of spin-Calogero model, deserves to be mentioned.
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